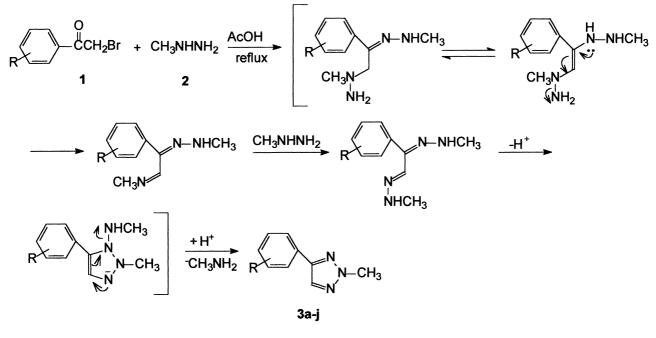
SHORT PAPER

A facile synthesis of 2-methyl-1,2,3-triazoles[†] Beihua Xu and Yongzhou Hu^{*}

Zhejiang University ,Department of Medicinal Chemistry, School of Pharmacy, Hangzhou 310006, P.R. China

Reaction of α -bromoacetophenone bearing various substituents on the benzene rings with methylhydrazine in refluxing acetic acid afforded 2-methyl-4-phenyl-1,2,3-triazoles. The relation between the substituents and the yields is briefly discussed.


Keywords: 2-methyl-1,2,3-triazoles, methylhydrazones, phenacyl bromides

The 1,2,3-triazole moiety is a very interesting component in terms of biological activity. Indeed, the 1,2,3-triazole moiety is present in a number of drugs such as the human β_3 -adrenergic receptor agonist¹, inhibitor of HIV-1 replication² or potassium channel activator³⁻⁶, *etc.* The general method for the synthesis of 1,2,3-triazole is the 1,3-dipolar cycloaddition of various azides (or salts thereof) with acetylenes,^{7,8} activated methylene compounds,³ or nitriles.⁹ In particular, the intramolecular condensation of bisarylhydrazones has been a method of choice for the synthesis of 2,4-diaryl-1,2,3-triazoles (3) by cyclisation of α -bromoacetophenone with methylhydrazine. The method is more satisfactory in terms of availability of starting materials and one-pot operation than those previously reported.

In the course of our studies on the synthesis of 2-arylimidazo[2,1-*a*]isoquinolines, based on the cyclisation of phenacylisoquinolinium bromide with ammonium acetate in the presence of acetic acid,¹³ the ammonium acetate was substituted by methylhydrazine. Unexpectedly, 2-methyl-4phenyl-1,2,3-triazole (**3a**) was obtained. This suggested that the reaction process could be analogous to an earlier report,¹⁰ and therefore we investigated α -bromoacetophenone as the starting material in reaction with methylhydrazine. The same product was afforded in 59% yield. In order to evaluate the scope of this reaction, various α -bromoacetophenones bearing substituents on the benzene ring were prepared to react with methylhydrazine. The corresponding 2-methyl-4-phenyl-1,2,3-triazoles (**3a–j**) were obtained in moderate to high yields (Table 1). It was also observed that the benzene ring substituents have a considerable influence on the yields: electron-donating substituents lead to higher yields, while electron withdrawing ones result in lower yields. A possible mechanism is proposed here (Scheme 1).

It is noteworthy that, when α -bromoacetophenone was treated with phenylhydrazine, the expected product, 2,4-diphenyl-1,2,3-triazole, was not formed except in the presence of cupric ion. More detailed work on these reactions is in progress in our laboratory.

In summary: we have developed a mild and facile route to 2-methyl-4-phenyl-1,2,3- triazoles. Electron-donating substituents on benzene ring of α -bromoacetophenones lead to higher yields than electron-withdrawing ones.

Scheme 1

^{*} To receive any correspondence. E-mail: huyz@zjuem.zju.edu.cn

[†] This is a Short Paper, there is therefore no corresponding material in

J Chem. Research (M).

Table 1 Analytical and spectroscopic data for compounds 3a-j

No.	R	Yield /%	Mol. formula	m.p./ °C	Calc. (F C	⁼ ound) % H	N	¹ H NMR (CDCl ₃) /δ	IR(KBr) /v(cm⁻¹)
3a	Н	59	$C_9H_9N_3$	56	67.91	5.70	26.40	4.23 (s,3H), 7.35 (m,1H), 7.42	3035, 1476, 1457,
					(68.12)	(5.65)	(26.60)	(t,2H), 7.77(m,2H), 7.81 (s,1H)	1385, 764, 691
3b	4-Cl	47	C ₉ H ₈ CIN ₃	96-98	55.83	4.16	21.70	4.23 (s,3H), 7.39 (m,2H), 7.70	1471, 1377, 829
					(55.69)	(4.01)	(21.4)	(m,2H), 7.79(s,1H)	
3c	4-Br	41	C₀H ₈ BrN₃	120-122	45.40	3.39	17.65	4.23 (s,3H), 7.55 (m,2H), 7.64	1473, 1379, 832
					(45.16)	(3.43)	(17.4)	(m,2H), 7.80 (s,1H)	
3d	3,4-Cl ₂	21	C ₉ H ₇ Cl ₂ N ₃	106-108	47.39	3.10	18.42	4.24 (s,3H), 7.49 (d,1H), 7.59	1604, 1564, 1463,
					(47.06)	(3.07)	(18.68)	(m,1H), 7.80 (s,1H), 7.87 (d,1H)	1380, 876, 819
3e	2,4-F ₂	6	$C_9H_7F_2N_3$	36-38	55.38	3.62	21.53	4.25 (s,3H), 6.94 (m,2H), 7.93	1598, 1446, 1383,
					(55.21)	(3.65)	(21.61)	(m,2H)	860, 831
3f	4-NO ₂	11	$C_9H_8N_4O_2$	118-120	52.94	3.95	27.44	4.28 (s,3H), 7.95 (m,3H), 8.29	1603, 1511, 855
				(dec.)	(52.82)	(4.07)	(27.26)	(m,2H)	
3g	3-CI-4-CH ₃	37	C ₁₀ H ₁₀ CIN ₃	38-40	57.84	4.85	20.23	2.41 (d,3H), 4.23 (s,3H), 7.38	1613, 1472, 1384,
					(57.67)	(4.59)	(20.38)	(d,1H), 7.53 (m,1H), 7.65 (d,1H), 7.78 (s,1H)	880, 822
3h	4-CH ₃	56	C ₁₀ H ₁₁ N ₃	64-66	69.34	6.40	24.26	2.37 (s,3H), 4.21 (3H), 7.22	3035, 1485, 1385,
	1 0113	00	010111113	01.00	(69.01)	(6.17)	(24.04)	(d,2H), 7.65 (d,2H), 7.77 (s,1H)	821
3i	4-CH₃O	73	C ₁₀ H ₁₁ N ₃ O	104-106	63.48	5.86	22.21	3.84 (s,3H), 4.21 (s,3H), 6.96	1613, 1578, 1483,
	. 0.130		0101111130		(63.34)	(5.99)	(21.98)	(m,2H), 7.69 (m,2H), 7.74 (s,1H)	1383, 837
3j	4-OH	81	C ₉ H ₉ N ₃ O	126-128	61.70	5.18	23.99	4.22 (s,3H), 6.89 (m,2H), 7.63	3195, 1617, 1591,
-,		••		120	(61.52)	(5.23)	(23.85)	(m,2H), 7.75 (s,1H)	1492, 1452, 843

Experimental

Melting points were uncorrected. ¹H NMR spectra were recorded on a Bruker AM-400 MHz spectrometer with SiMe₄ as the internal standard. IR spectra were recorded on a Bruck Vector 200 spectrophotometer and microanalyses were performed on a MOD-1106 elemental analyzer.

General procedure

Methylhydrazine (1.7 ml, 30 mmol) was added slowly to the solution of α -bromoacetophenone (1.2 g, 6 mmol) in acetic acid (2 ml). The mixture was heated to reflux using an oil bath for about 3 hours. After cooling to room temperature the reaction mixture was neutralised with 20% NaOH solution and then extracted twice with chloroform. The combined organic extracts were washed with water and dried over anhydrous Na₂SO₄. The solution was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel using ethyl acetate : petroleum ether (1 : 15) as eluant to afford **3a** (59 % yield) as a white solid, m.p.: 56 °C (Lit.⁹ 58 °C).

We would like to thank Professor Qian Weixin for helpful advice.

Received 18 April 2002; accepted 31 August 2003 Paper 02/1349

References

- L.L. Brockunier, E.R. Parmée, H.O. Ok, M.P. Candelore, M.A. Cascieri, L.F. Colwell Jr., L. Deng, W.P. Feeney, M.J. Forrest, G.J. Hom, D.E. MacIntyre, L. Tota, M.J. Wyvratt, M.H. Fisher and A.E.Weber, *Bioorg. Med. Chem. Lett.*, 2000, 10, 2111.
- 2 S. Velazquez, R. Alvarez, C. Perez, F. Gago, E. De Clercq, J. Balzarini and M.J. Camarasa, *Antivir. Chem. Chemother.*, 1998, 9, 481.
- 3 G. Biagi, V. Calderone, I. Giorgi, O. Livi, V. Scartoni, B. Baragatti and E. Martinotti, *Eur. J. Med. Chem.*, 2000, 35, 715.
- 4 B. Baragatti, G. Biagi, V. Calderone, I. Giorgi, O. Livi, E. Martinotti and V. Scartoni, *Eur. J. Med. Chem.*, 2000, 35, 949.
- 5 G. Biagi, V. Calderone, I.Giorgi, O. Livi, V. Scartoni, B. Baragatti and E. Martinotti, *Farmaco*, 2001, 56,841.
- 6 G. Biagi, I. Giorgi, O. Livi, V. Scartoni, P.L. Barili, V. Calderone and E. Martinotti, *Farmaco*, 2001, 56, 827.
- 7 M. Journet, D. Cai, J.J. Kowal and R.D. Larsen, *Tetrahedron Lett.*, 2001, **42**, 9117.
- 8 S.J. Howell, N. Spencer and D. Philp, *Tetrahedron*, 2001, **57**, 4945.
- 9 H. Hoberg, *Liebigs Ann. Chem.*, 1967, **707**, 147.
- 10 N. Latif and S.A. Meguid, J. Chem. Soc., Perkin Trans. 1, 1972, 1095.
- 11 K.S. Balachandran, I. Hiryakkanavar and M.V. George, *Tetrahedron*, 1975, **31**, 1171.
- 12 H.E. Khadem, M.M. El-Sadik and M.H. Meshreki, *J. Chem. Soc.* (*C*), 1968, 2098.
- 13 W. Qian and Y. Hu, J. Chem. Res. (S), 2001, 320